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Transmission studies for one-dimensional photonic crystals (1DPCs) containing single-negative (SNG)
materials inserted with multiple defects are presented. The numbers and positions of the defect modes
inside zero-phase (zero-φeff) gap are found to be well characterized by effective medium theory.
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Recently, the defect modes inside the photonic band
gap (PBG) have been widely studied due to their pecu-
liar properties and potential applications[1−11]. Among
them, the defects of the one-dimensional photonic crys-
tals (1DPCs) containing metamaterial were studied most.
In comparison with the defect modes in the conven-
tional PBG, the defect appeared either in the zero-phase
(zero-φeff) gap or in the zero-index (zero-n) gap is quite
interesting[3,12]. It is almost independent of the incident
angle, the scaling of the lattice constant, and the disor-
der.

In this paper, we investigate the characteristics of
the defect modes appearing in the zero-φeff gap from
the 1DPCs combined with two types of single-negative
(SNG) materials. The SNG materials include the mu-
negative (MNG) media with negative permeability (µ)
but positive permittivity (ε) and the epsilon-negative
(ENG) with negative ε but positive µ. By adjusting the
numbers of defect layers, we realize the defect modes with
various numbers in the gap. To our interest, we obtain
the frequency equation for the defect modes based on
the effective medium theory. Numerical results are in
good agreement with those based on the transfer matrix
method.

We consider the system that 1DPCs composed of al-
ternating layers of MNG material and ENG material are
doped by a defect layer with positive refractive-index ma-
terial, as shown in Fig. 1(a). The physical properties of
MNG and ENG are supposed to be

ε1 = εa, µ1 = µa −
α

ω2 + iωΓm
(1)

Fig. 1. Schematic of the two structures with a defect. (a)
The light gray and white regions denote the MNG and ENG
layers, respectively; (b) the white regions denote the effective
material. Both the dark gray regions denote the defect layer.

in MNG materials and

ε2 = εb − β

ω2 + iωΓe
, µ2 = µb (2)

in ENG materials. These kinds of dispersion for ε and
µ may be realized in special microstrips[13]. In Eqs. (1)
and (2), Γm and Γe are the damping constants, and ω
is the frequency measured in GHz. Without loss of gen-
erality, we choose µa = εb = 0.4, εa = 20.5, µb = 1.6,
α = 360, β = 160, Γm = Γe = 2π × 3 × 106 s−1[8]. The
thicknesses of MNG, ENG, and defect layer are assumed
to be d1 = d2 = 8 mm and d3 = 64 mm. The refractive
index of the defect layer is n3 = 3.4.

We study the defect-induced transmission of the
hetero-structure (AB)nDm(AB)n, as shown in Fig. 1(a),
where n, m are the period numbers of AB and D. Fig-
ure 2 shows the transmittance through the structure for
different numbers of defects for normal incidence. It is
shown that the numbers of defect modes inside the band

Fig. 2. Transmittance through periodic structure with
different numbers of defects. (a) m = 0, (b) m = 1, (c)
m = 2, and (d) m = 3.
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gap are 0, 1, 2, and 3 respectively. The conclusion is very
useful, as the frequency, frequency interval, and the num-
ber of transmission channels can be tuned by adjusting
the number of defect layers.

When the zero-φeff gap appears, the system may
be treated within effective medium theory[14,15]. The
effective permittivity εe and the effective permeability
µe of the layered structure are given by[14]

µe =
d1

d
µ1 +

d2

d
µ2, (3)

εe =
d1

d
ε1 +

d2

d
ε2 − sin2 θ(

d1

dµ1
+

d2

dµ2
)

+ sin2 θ/(
d1

d
µ1 +

d2

d
µ2) (4)

for TE polarization. Here θ is the incident angle and
d = d1 +d2 is the lattice constant. Equations (3) and (4)
indicate that the period structure containing two kinds
of materials can be effectively simplified as one mate-
rial which has the equivalent property of electromagnetic
wave propagating, as shown in Fig. 1(b). Similar as
Fig. 1(a), we denote the structure as EDmE, where E is
the equivalent material for (AB). The transmittance of
the EDmE structure is also calculated by the transfer-
matrix method, as shown in Fig. 3. In comparison with
Fig. 2, we find that the two structures almost yield the
same transmission spectra.

Following, we would like to derive the frequencies of
the defect modes. We suppose a TE wave normally inci-
dent on the EDE structure. The transfer matrix of E is
written as

Fig. 3. Transmittance through effective material structure
under different numbers of defects. (a) m = 0, (b) m = 1, (c)
m = 2, and (d) m = 3.

Fig. 4. f(ω) as a function of ω with different thicknesses of
defect layer. (a) d3 (64 mm), (b) 2d3, (c) 3d3.

~ME =

(

cos(kede) i
√

µe

√
εe

sin(kede)

i
√

εe

√
µe

sin(kede) cos(kede)

)

, (5)

where ke = ω

c

√
εe
√

µe is the effective wave vector, c is
the light speed in vacuum, and de is the thickness of E.
In addition, the transfer matrix of D is

~MD =

(

cos(k3d3) in−1
3 sin(kede)

in3 sin(k3d3) cos(k3d3)

)

, (6)

where k3 = ω

c
n3 is the wave vector in the defect layer.

As a result, the total matrix of the whole EDE structure
is

~M = ~ME
~MD

~ME. (7)

The dispersion relation can then be expressed as

f(ω) = cos(2kede) cos(k3d3)

−1

2
(

√
µe√
εe

n3 +

√
εe√
µe

1

n3
) sin(2kede) sin(k3d3). (8)

In Eq. (8), |f(ω)| > 1 dictates the forbidden gap, while
|f(ω)| ≤ 1 indicates the pass bands. We plot f(ω) as a
function of ω in Fig. 4. Figures 4(a)—(c) correspond to
d3, 2d3, and 3d3, respectively. It is shown that when the
gap is opened, |f(ω)| becomes very large. And when the
defect mode inside the gap appears, |f(ω)| → 0. For in-
stance, when the thickness of defect layer is d3 (64 mm),
we obtain the frequency ω/(2π) = 1.06783−1.06786 GHz
under the condition |f(ω)| < 1. This is just the defect
mode frequency (1.067 GHz) of the structure. The cases
of 2d3 and 3d3 can also be discussed. Therefore, one
can use Eq. (8) to determine the frequency of the defect
modes.

In conclusion, the defect modes inside the zero-φeff gap
were investigated. By modulating the number of defect
layers, the defect modes can be tuned simultaneously.
This phenomena can be well described within effective
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medium theory, and the frequency of the defect modes is
derived within effective medium theory accordingly.

L. Gao is the author to whom the correspondence
should be addressed, his e-mail address is leigao@
suda.edu.cn.
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